259 research outputs found

    Analisis en tiempo y frecuencia de señales de vibracion tomadas al pie del carril durante el paso de un tren

    Get PDF
    La caracterización de los defectos en el contacto entre la rueda y el carril en el transporte ferroviario usando señales de vibración ha sido en los últimos años un factor importante en el mantenimiento de los ferrocarriles para limitar el impacto de las vibraciones producidas tanto en las instalaciones propias como en su entorno. Este trabajo es una contribución al estudio y caracterización de posibles defectos presentes en el material móvil de los Ferrocarriles Metropolitanos deBarcelona (FCMB). Para ello, se propone el uso de técnicas tiempo-frecuencia utilizando la STFT (Short Time Fourier Transform) y la CWT (Continue Wavelet Transform)

    Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed

    Full text link
    [EN] Three-dimensional mathematical model was developed for a rectangular TE10n microwave heating cavity system, working at 2.45 GHz. Energy/heat, momentum equations were solved together with Maxwell's electromagnetic field equations using comm. MULTIPHYSICS (R) simulation environment. The dielectric properties, epsilon' and epsilon '', of NaY zeolite (Si/Al = 2.5) were evaluated as a function of temperature. Considering these values, the microwave heating of a porous fixed-bed made of dry NaY zeolite was simulated. Electric field distribution, axial and radial temperature profiles and temperature evolution with time were obtained. The zeolite fixed bed was heated up to 180 degrees C in 5 min, with 30 W power. The fixed-bed temperature evolution under non-steady state conditions showed the same trend as the one observed experimentally with only an average deviation of 10.3%. The model was used to predict microwave heating of other materials improving energy efficiency of the microwave cavity. Furthermore, the developed model was able to predict thermal runaway for zeolites.Financial support from the European Research Council ERC-Advanced Grant HECTOR-267626 is gratefully acknowledged. Hakan Nigar acknowledges financial support from the Spanish Ministry of Education for the FPU grant (Formacion del Profesorado Universitario - FPU12/06864), and also for the academic short stay grant (Estancia Breve - FPU2016) at the Delft University of Technology, Delft, The Netherlands.Nigar, H.; Sturm, GSJ.; García-Baños, B.; Penaranda-Foix, FL.; Catalá Civera, JM.; Mallada, R.; Stankiewicz, A.... (2019). Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Applied Thermal Engineering. 155:226-238. https://doi.org/10.1016/j.applthermaleng.2019.03.117S22623815

    New England Medical Center Posterior Circulation Stroke Registry: I. Methods, Data Base, Distribution of Brain Lesions, Stroke Mechanisms, and Outcomes

    Get PDF
    Among 407 New England Medical Center Posterior Circulation Registry (NEMC-PCR) patients, 59% had strokes without transient ischemic attacks (TIAs), 24% had TIAs before strokes, and 16% had only posterior circulation TIAs. Embolism was the commonest stroke mechanism accounting for 40% of cases (24% cardiac origin, 14% arterial origin, 2% had potential cardiac and arterial sources). In 32%, large artery occlusive lesions caused hemodynamic brain infarction. Stroke mechanisms in the posterior and anterior circulation are very similar. Infarcts most often included the distal posterior circulation territory (rostral brainstem, superior cerebellum and occipital and temporal lobes), while the proximal (medulla and posterior inferior cerebellum) and middle (pons and anterior inferior cerebellum) territories were equally involved. Infarcts that included the distal territory were twice as common as those that included the proximal or middle territories. Most distal territory infarcts were attributable to embolism. Thirty day mortality was low (3.6%). Embolic stroke mechanism, distal territory location, and basilar artery occlusive disease conveyed the worst prognosis

    Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation

    Full text link
    [EN] Microwave internal gelation (MIG) is a chemical process proposed for the production of nuclear particle fuel. The internal gelation reaction is triggered by a temperature increase of aqueous droplets falling by gravity by means of non-contact microwave heating. Due to the short residence time of a solution droplet in a microwave heating cavity, a detailed knowledge of the interaction between microwaves and chemical solution (shaped in small drops) is required. This paper describes a procedure that enables the measurement of the dielectric properties of aqueous droplets that freely fall through a microwave cavity. These measurements provide the information to determine the optimal values of the parameters (such as frequency and power) that dictate the heating of such a material under microwaves.This work is a part of the PINE (Platform for Innovative Nuclear FuEls) project which targets the development of an advanced production method for Sphere-Pac fuel and is financed by the Swiss Competence Center for Energy and Mobility. The work has been also financed by the European Commission through contract no 295664 regarding the FP7 PELGRIMM Project, as well as contract no 295825 regarding the FP7-ASGARD Project. MC-S would like to thank the ITACA research team (UPV Valencia, Spain) and the EMPA Thun (Switzerland) for their support in the measurements and Carl Beard (PSI, Switzerland) for the help provided in respect with CST simulations. The work of FLP-F was supported by the Conselleria d'Educacio of the Generalitat Valenciana for economic support (BEST/2012/010).Cabanes Sempere, M.; Catalá Civera, JM.; Penaranda-Foix, FL.; Cozzo, C.; Vaucher, S.; Pouchon, MA. (2013). Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation. Measurement Science and Technology. 24(9). https://doi.org/10.1088/0957-0233/24/9/095009S24

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
    corecore